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theory of oblique shock reflection, an approximate theory of
the anomalous refiection phenomenon 1s derived. This theory
permits the determination of peak pressure; shape and duration
of the positive pressure pulse and appears to be applicable

to shallow explosions in deep water at depths greater than
3 charge radiil from the free surface.
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The study revorted here was carried out under Task Re2c-65-1
as part of a program aimed at investigating the anomalous

surface reflectlon of shockwaves from shallow explosions in

deep water, Since the material in this report 1is of immediate
interest to otrer groups, it is published in its present form

at this time. The experimental data w3th which thls work can
be compared will be reported later.

The authors wish to point out the essentially non-stationary
nature of the entire problem, and the serious assumptions
inherent in the stationary flow simplification used in this
paper. The senior author (H. G. S.) has suggected a possible

attack leading to a more exact solution, which will be pre-
sented later 1f time permits.

This report is for information only, and the opinions ex-
pressed herein are those of the authors,

This revision supersedes NAVORD Report 2710, dated 1 January
1953.

W. W, WILBOURNE
Captain, USN

. E. Ablard
By direction
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ON THE OELIQUE REFLECTION OF UNDERWATER SHOCKWAVES
FROM A FREE SURFACE I

I INTRODUCTION

When a shockwave produced by an underwater explosion
comes in contact with a free surface, its pressure must drop
to approximately atmospherlc, or more precisely, to the same
pressure as the alr shock produced at the interface. As a
result, a tenslon wave 1s reflected from the surface, which
modifies the incldent wave 1n the water. At the free surface,
the situatlon of oblique reflectlon of a shockwave can be
treated as a quasi-stationary flow problem, where the pressure
is relieved by a flow around a Prandtl-Meyer corner [L]*., As
was first pointed out by Penney, the flow into the expan-
sion wedge becomes subsonlc 1f the glancing angle of the shock-
wave 1s sufficlently small. As a result, the rarefactlion wave
overtakes the inclident shock front and attenuates 1t. This
leads to a region of peak pressure distortlon, whose boundaries
have been calculated by Penney and Keil [I] for a spherical
shockwave,

In the present paper, an attempt 1s made to analyze the
phenomenon within the distorted region. A pseudo-stationary
approach 1s used, and as a result it appears that the pressure
relief in this region takes place in two stages: Part of the
pressure 1s released by means of a wave which 1s traveling
faster than the incident shock; the remaining pressure 1is
then relieved through a Prandtl-Meyer corner flow. On the
baslis of this treatment, 1t 1s possible to construct pressure-
time histories for shockwaves in the reglons of anomalous
reflection.

*A11 such letters refer to the list of references at the end
of thils report.
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II REGULAR REFLECTION AND THE PRANDTL-MEYER CORNER FLOW

The Interactlion of a plane shockwave of infinite duration
with a free surface at a sufficlently large glancing angle,
can be represented by a stationary flow pattern 1 a steady
flow 1s superposed parallel to the surface. This flow is
shown by the vector - U sec ® in Figure 1, where U 1s the
propagation veloclty of the shockwave, and ® 1s the angle
between the wave front and the normal to the surface. Since
a positive disturbance of finite amplitude must travel wilth
supersonic velocity (U>-co,the sound velocity in the undis-
turbed medium), this superposed flow is always supersonic.
This flow corresponds to the undisturbed water before the
shock front, as observed from the moving point of intersection
of the shock front with the free surface. The flow behind the
shock front is modified by a quantity u, the actual particie
veloclilty behind the front. This flow, fi’ can be obtalned by
vector addition of the original superposed flow and u, as
shown at the bottom of Figure 1.

The pressure at the free water surface must remaln atmos-
pheric. As long as the flow fi is supersonic (or sonic), this
condition can be realized by a statlionary expansion wave,
centered at the point of Intersectlion of the shock front with
the surface. This is the well-known Prandtl-Meyer corner
flow, Figure 2 illustrates this flow more clearly; the expan-
sion wedge conslists of the Mach lines of the corner flow,

According tc the Prandtl-Meyer analysls of a 2-dimension-
al irrotational steady supersonic expansive flow around a
corner [L], the relationship between the angular deflection of

Ay =
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the Mach lines, Q, and the pressure, P, is given by the
expression

(-‘g + %g)dp

dnp = (1)
? (f 4 oon, - 2w - 02)1/2

i i
¢ and V deslignate the sound velocity and the specific volume,
while w 1s the specific enthalpy, defined by

" =SVdP (2)

wy is the specific enthalpy of the flow fi at the beginning
of the expansion.

Substitution of numerical values from the Appendix
permits analytic integration of differential equation (1) over
the pressure range of interest. For a complete expansion to
zero pre.-.ure, the integral

=0 -2 -6
= dQ = [(1-9.0&6 x 10" °N-1.048 » 107 °P)
(B

P=0 (3)

(N-2,318 » 10‘5P)1/2]
P=P,

is obtained, in which P, the pressure in psi, 1s evaluated
between the limits Pi,(the pressure of the flow fiL and O,
N is a function of the flow fi into the corner and is given by

f2

1 =
N=—5-1+ 6.282 * 10

cO

6 < 1h~3
Py2 2.318 * 1077, (4)

St o
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The equality sign on the right hand side refers to sonic
entry into the corner, 1In the latter case,

N 0.276 Pil/2 (5)

for moderate pressures, _

As a first approximation, the change 1n angle q corre~
sponding to an expansion from Pi to any pressure P in equation
(3) 1is proportional to the square root of the pressure change.
As a result, the pressure change in the expansion wedge as a
function of the angle approximates a second order parabolic
decay

P Pi[l-g&)e] (6)
In all practica’ cases, the shockwave to be considered
is spherical. Some general considerations applicable to this
case are in order here, Because of the curvature of the front,
the angle 8, the pressure, and consequently all other vari-
ables change with time or distance from the charge center; a
stationary flow can therefore no longer be realized, However,
over a very small area close to the free surface, the curv-
ature of the front 1s negligible, and the stationary flow
pattern illustrated 1n Figure 1 1s applicable at any one time
(a quasi-stationary flow). If the region of interest extends
an appreclilable distance down from the surface, the shock front
and the expansion wedge become arcs (the latter only as an
approximation)., Superposition of a radial flow, parallel to
the surface at the surface, as 1llustrated in Figure 3, makes
the entire shock front and the expansion wedge at the surface
quasi-stationary. The expansion wedge farther down, however,
will not be completely quasi-stationary. The greater the

5
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curvature of the arcs and the greater the distance between the
shock front and the expansion wave, the greater will be the
deviation from the quasi-stationary flow. For the geometries
considered in this paper, the deviation is not serious and can
be neglected, Thus, it becomes possible here to consider a
stationary flow pattern even in the case of a spherical shock-
wave, This makes it feasible to extend many of the results
obtained in the plane case to the actual spherical problem by
an analogy to the method of images used in acoustics.

IITI THE CRITICAL CONDITIONS AND THE BOUNDARY
OF THE ANOMALOUS REGION

For a plane shock wave, as shown in Figure 1, the flow fi
into the expansion wedge is a function of the glancing angle ©
and the pressure P, This is true because the propagation
velocity U and the particle velocity u depend only on P. If
for a shockwave of given pressure, the angle 6 is decreased,
the absolute magnitude of fi decreases, aud eventually fi
may become sonic. In that case, the initial Mach line of the
expansion wedge must be perpendicular to the flow fi; the
flow out of the wedge remains supersonlic. If the flow fi
becomes subsonic, the entire Prandtl-Meyer treatment collapses,
and such centered expansion at a corner is no longer possible,

The point where the flow fi is sonic constitutes the
boundary between regular and "anomalous" surface reflection,
For the case of an infinite plane shockwave, the condition of a
sonic flow fi leads to a relation between the shock pressure P
and the critical glancing angle ocrit: From the velocity
triangle in Figure 1, it follows that

e e . et e e et
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(U sec®-u cos@)z-uzsinze = fi . (7)

But fi = ¢ (the local sound velocity) is the condition of
sonic flow; therefore,

) 2 2.2 2
(u sec® .. - U c°°®crit) - u“sin®@, ., = ¢ (8)

or 8 .. = tan t{3lec2-(u-u)2)2/2} (9)
crit U

where U, u, and ¢ are functions of the shock pressure P.
The fact that the first Mach line of the expansion is
perpendicular to the sonic flow fi’ leads to the expression

= -1 (u
>‘cr'it D) is'sinecrit} (10)

where A is the angle which the first expansion Mach line makes

with the perpendicular to the free surface. This angle becomes

very small for pressures less than 10,000 psi and can usually
be neglected. In other words, the first Mach line can be
considered as belng perpendicular to the free surface.

If the plane shockwave of the preceding discussion is
considered to be a small section of a spherical shockwave at
the free water surface, the pressure P and its functions U, u,
and ¢ become functions of the radlial distance from the charge
center. Substitution of the numerical values given in the
Appendix transforms equation (9) into

L 10-5 1/2
tan @ ., . = SASQH D 56 (11)
145.367 * 10 P

(6]

o o A i e et et it
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and  tan 8, = 1.620 7700 _ 1 353 371:80 pontorite
(12)

1.574 3-905 _ 8736 #71-695 qyp

where T represents the radial distence from the charge center
expressed 1n charge radii¥*.

Thus, for a spherical wave, there exists a point at the
surface beyond which the reflection 1s anomalous. For any
particular position of the charge, thut 1s for a charge at
depth d below the surface, this point willl be at a definite
radial distance, ?crit’ from the charge center, given by

rll

3 _ = 1.20\1/2
orit = d(1.449 + ,3C15 et ) Pentolite

(13)

= 3(1.449 + .4ou7 ?Cii23)1/2 TNT

As d increases, T, ¢ Increases, and for d=212, expres-
sion (13) reduces to

ool 32-50 Pentolite

Fcrit ( u)
1
.354 3=-30 TNT

This shows that a region of anomalous surface reflection
exists for every charge depth**, The distance from the charge
center to the beginning of this region at the surface,
increases rapidiy with charge deptn.

Terit?

*Throughout this paper, symbols with bars over them will
represent distances expressed in charge radii,.

**(f course, the nunerical equations apply only as long as the
shockwave pressure-distance relationsnips, as given in the
Appendix, are valid. According to reference [C], this is true
to relatively large distances.

9
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Next, consider a plane shockwave which suddenly interacts
with the free surface at a glancing angle which is less than
the critical angle. From the point of intersection of the
shock front with the surface, a signal will originate which
rropagates with the local sound velocity ¢ into the local
particle stream of velocity u. Since the glancing angle is
less than the critical angle, the horizontal velocity compo-
nent of the signal 1s greater than that of the shock front.
Thus, the surface signal overtakes the shock front, This is
illustrated in Figure 4.

The path of descent of the primary surface signal must
be the line along which the shockwave has the same velocity
as the surface signal. This 1s the case where vector addition
of ¢ and u equals U, or in other words where c¢ eguals fi'
This condition 1s analogous to the critical condition at the
free water surface, so that the path of descent may be con-
sldered a free surface, which the incident shock intersects
at the glancing angle Gcrit' The shock front below this path
is unaffected by the surface signal, above this path it is
attenuated. The region where the shock front is attenuated
constitutes the ”anomalous"region.

According to these considerations, Keil [I] has defined
the boundary of the anomalous region 2as the curve which
intersects the radius vector T from the charge center at the
critical angle. This leads to a differential equation for
the rate of descent of the boundary:

(15)

d-ycrit)a]l/2 = d-Yopit
T

— = tan & 1 -
dr crit[ F

where ?crit’ expressed in charge radii, is the depth of the )
anomalous region boundary beneath the free surface, For a

10
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spherical wave, the critical angle 1s a function of the radius
vector T, as shown in equation (12). Substitution of the
appropriate expressions in the differential equation (15) and
integration* lead to the expressions

37 Pentolite
-3 o
—STLE _ s1n (3.033 37-00- 752 #71+80 4 ug7 77300 |y

r

INT S

cin (2,784 B0 515 571095 4 a7 572:825 _ )

k' 1s a constant of integration evaluated at the point of
critical surface reflection; that is, at * = ?crit’ 7crit
must be O,
In the preceding derivation, the path of a signal origin-
ating at the point of critical surface reflection was traced.
It appears reasonable that this signal is indeed the first to
arrive at the shock front at a given depth y; however, no
proof is yet at hand that a signal originating at the surface

prior to the point of critical reflection must arrive at the
shock front at a later time.

IV THE ANOMALOUS REGION

The discussions of the previous section lead to a defin-
ite picture of the shockwave in the anomalous region: a spher-
ical shock front invades the undisturbed water. An expansion
wave originating from the free surface has overtaken the
incident shock front near the surface, and 1ts head intersects
the shock front at the known depth ?crit‘ The shock 1s atten-
uated when overtaken by this rarefaction wave. The shock

*, Mostow, in a private communication, %ointed out that the

differential equation (15), due to Keil [I], can be integrated
analytically.

12
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pressure will decrease from the free water value at ?crit
a value Ps at the surface, in a manner depending on the
pressure profil: c¢f the rarefaction wave.

At this point the assumption 1is made that the conditions
in and immediately below the anomalous region can be repre-
sented approximately by a quasi-stationary flow pattern
together with a nonstationary rarefaction wave. Figure 5
1llustrates such a flow pattern for a plane shockwave. A flow,
--UF sec @, which makes the undistorted shock front stationary,
is superposed. The head of the nonstationary rarefaction wave
intersects the shock front at the boundary of the anomalous
region, that 1s, at the depth ?crit‘ The point of intersec-
tion of the actual shock front with the surface must coincide
with the stationary rear of the nonstationary rarefaction
wave, The remalning pressure must be released at this point;
this 1s accomplished by a stationary centered expansion wave,
the Prandtl-Meyer corner flow,.

The pressure Ps at the rear of the nonstationary rare-
faction wave can be found from the condition that the flow
should be stationary there. This leads to the following
procedure: The flow into the nonstationary wave 1s split
into components parallel and perpendicular tc the wave.

to

Parallel component =

(UF sec® - up cos®) siny - u, sin® cosy (17)

Perpendicular component =

(UF sec® - ug cos®) cosy (18)

where v = (®crit - ®). The wave accelerates the perpendicular

13
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component of the flow., For a plane wave, the acceleration
depends only on the overall pressure change. At the rear of
the wave, the perpendicular component of the flow must be
equal to the local sound velocity. Thus,

B

F
cg = (U secé - up cos®) cosy + S

. % ap (19)

5
The last term, the Riemann function, represents the velocity
increment which the nonstationary wave imparts to the flow.
The expression can be solved for the pressure Ps at the
beginning of the stationary expansion centered at the surface.
Actually, the shock front in the anomalous region itc bent
back and, because of its lower peak pressure there, propagates
at a lower velocity than the unattenuated shock. As a rough
approximation, it can be assumed that these two effects cancel
as far as the horizontal propagation velocity of the wave is
concerned, In other words,

Up sec® = Uy secﬁy = Ug sec¢s (20)

where ¢ represents the glancing angle of the attenuated front,
and the subscripts s and y refer to the surface and to any
depth y in the anomalous region respectively (see Figure 5).
Equation (20) states that the superposed flow Up sec® makes
the entire shock front stationary with respect to the surface.
Substitution of the numerical values from the Appendix into
this equation leads directly to a relation between ﬁ& and P
the peak shock pressure at any depth y:

(1 + 5.367 » 10'6PF) cosd J
= di e
cos®

y’

P. = 1.863 x 10° [ (21)

24

15
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It can be shown that rotation 1s introduced into a stream
on passing through a bent shockwave [0]. 1In the present case,
this effect causes the rarefaction wave to bend back slightly
close to the surface. At the relatively low pressure of
interest here, this bending is small and can be neglected,

Next, equation (19) is evaluated for the guasi-station-
ary case of a plane wave, whose parameters change with dis-

tance from the origin like those of a spherical shockwave.
This leads to the expression

-

P =1.570x102 38 1°90 _ 38.63 =103 #1°2° pentolite

[&2]

(22)
= 1,360 » 105 61’4'1'565 - 3.80 ~ 103 F-l.lg TNT

For the actual spherical case, an analogv to the method
of images permits arcs to be substituted for the plane wave
configuration in Figure 5. Account must be taken of the
spherical divergence term zrising from the equation of conti-
nhulty. This term, which must appea» on the right hand side of
eouation (19), i1s approximated by

total

1 N =
Fig b 2
= So PAX (T %, ..;) (23)

Nl .

where X 1s the distance from the back of the nonstationary
wave perpendicular to its direction of propagation, itotal is
its total width and p, 1s the density of the undisturbed water.
(23) is conveniently expressed as a correction term

_ A Xeopay P

APspherical - T (24)

whicnh must be added %to the incident surface pressure of the

16
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plane case, equation (22). The symbol q in equation (24)
represents a fraction, which depends on the pressure profile
of the rarefaction wave. 1Its value, based on experimental
observations, appears to be approximately .85.

The pressure profile of the rarefaction wave is related by
a geometric argument to the pressure-depth variation along the
shock front in the anomalous region. The latter is related to
the angle Q& of the shock front in the anomalous reglon by the
stationary flow assumption and the Ranklne-Hugonliot conditions
[see equation (21)]. From varicus qualitative arguments, the
pressure, and therefore also the angle ¢&, 1s expected to
change most rapidly with depth near the surface and most slowly
at the lower edge of the anomalous region. This suggests a
power law for the angle Q& as given by the expression

g, = (g -0)(1-F)"+ (25)

where ¥ = y/ycrit is the "relative depth" in the anomalous
region, and n 1s a constant, whose value from actual experi-
ments appears to be approximately 4,

Knowledge of the angle Q& as a function of depth permits
a rough estimate of the total lag of the actual shock front at
the surface behind one which 1s not attenuated by surface sig-

nals. This is given by the following equation for the plane
wave case:

v
F _ crit - =
Liotal = So tan Q& dy - ¥,.4 tan® (26)
which becomes =
i" - ycrittan § (27)
total = (n + 1)

when § = (¢S - 0) is relatively small. The lag at the surface
behind that at any depth y in the anomalous region is similarly

17
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given by

Vepit tend

iy = (n + 1)

[1 - (1-%)"*) . (28)

These equations, which were derived for plane waves, are also
approximately correct for the spherical case.

The pressure of the nonstationary rarefaction wave is
constant along a line for which X, defined in connection with
equation (23), is constant. Thus, the pressure profile of
the rarefaction wave follows from the profile of the shock
front in the anomalous region [given by eguations (21) and
(25) as discussed previously] if the corresponding valucs
of X and § along the shock front are known. This relation
between X and ¥ follows from geometric considerations and is
given by the approximate expression

tand a+y

v
—7 [1--9)"] + § (2L 4 siny) - ¥° SRR .
tand 1+ F ¥
crit crit
nF 1t TTE +slny - =%

where X = i/itotal measures the relative distance through the
nonstationary wave. Note that X = O at the stationary end of
the wave, and X = 1 at the head of the wave,

The fiow through a statlonary expansion wave was solved
for the plane case in Section II of this report. Thus, in
equation (3), P, must be substituted for P,, and the total
velocity of the flow into the wedge is given by

12 e (1+2.463 x 10'6PF) siny 1P
= {(1 + 8.449 5 107 )% + 5T (30)
(o]

£

c

This provides everything to calculate the total deflection Q
18
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of the Mach lines at the Prandtl-Meyer corner. From this and

from the definition of 7, stated in conjunction with equations
(17) and (18), 1t follows that y , the angle which the rear of
the Prandtl-Meyer expansion wedge makes with the perpendicular
with the surface, is given by

Y o= vt (31)

It appears worthwhile here to make a few remarks on the
assumption of stationary flow, which was 1introduced in this
section. Actually, the plane wave case consists of a plane
incildent shock front and an approximately cylindrical expan-
sion wave, which s attenuating the incident shock. The
attenuated part of the shock front is traveling at a slower
rate than the unaffected part and thus eventually bends back
near the surface, Strictly speaking, it 1s only possible to
make the unattenuated part of the shock front stationary at
any one time; however, the theory derived 1n thils section
assumes a stationary flow through the entire shockwave config-
uration. The approximate character of this treatment shows
up in nonstationary effects at the surface: the superposed
flow through the nonstationary rarefaction wave 1is not quite
perpendicular to the wave front. The flow through the
stationary rear of this wave 1s thus slightly greater than
sonic, a condition which tends to increase the incident
pressure at the surface point.

15
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V THE CONSTRUCTION OF PRESSURE-TIME HISTORIES

If the theory developed in the rreceding sections 1s to
be of practical significance, it must predict satisfactorily
the pressure-time history of a shockwave at a distance r from
the charge center and at a depth y below the free surface.

A procedure which yields approximate pressure-time histories
1s outlined 1n thls section.

To begin wich, the quantities ¥, d, 6, O.r1t? Topit? TF?
and Ps for the plane case are calculated from the known charge
welght and geometry of the problem by means of the appropriate
equations in the text. A scaled diagram of the shock front

is then drawn, the bending back effect near the surface being
neglected at first. At the critical depth, ?crit’ on the
shock front, a line 1is drawn which makes the angle Gcrit with
the radius vector T from the charge center. The line 1is
extended back until 1t intersects above the free surface a
line passing through the charge center and perpendicular to
the surface. The point of intersection, A in Figure 6, which
in a sense represents an '"image" point for the nonstationary

20
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rarefaction wave, serves as a center for t{wo concentric cir-
cles passing through the critical point on the shocl: front
and through the surface point of the shock front respectively.

The distance between these circles represents a first approx-

imation to the width, itotal’ of the nonstationary wave. It

is now possible to calculate APspherical and Ps for the spher-

ical caise, and hence also ﬂs, ¢&J $®, and itotal' If the
latter quantity is appreciable, it must be included in itotal’
and values for Ps’ gs, etc., may have to be recalculated.
Finally, ¥ is calculated, and the corresponding "image" point,
B in Figure 5, is found by drawing a line through the correc-
ted surface point of the incident shock, which makes the angle
Y with the free surface. The point of intersection of this
line with the perpendicular to the surface zbove the charge
serves as the center of a circular arc representing the end of
the centered expansion. The final diagram is as indicated in
Figure 6.

Next, a path through the shockwave configuration is con-
sidered which corresponds approxinately to the way the shock-
wave passes a gauge. All distances are then converted to a
time scale. It is sufficient to use the sound velocity in
undisturbed water for this purpose. The peak shock pressure
and the pressure decay due to the nonstationary and the sta-
tionary centered wave are calculated from the appropriate
equations in the text. The results are superposed on the
pressure-time decay curve of the frece water shockwave as given
in equation (A4) of the Appendix, and the resulting curves are
smoothed out., The approximate pressure-time histories thus
drawn represent tne results obtainable with the present theory.

In conclusion, it may be worthwhile to discuss the range
of applicability of the present work. In general, it is
possible to calculate pressure-time histories for charge
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depths of 3 charge radiil or more¢, at distances where the free
water shockwave peak pressure is 10,000 psi or less. In this
case, the equations are all in analytical form, and agreement
with experiment* appears satisfactory. It should be noted
that the present theory was derived fcr the ideal case of a
semi-infinite homogeneous medium and a perfectly plane free
boundary. However, under actual experimental conditions,
other factors enter - such as surface roughness, temperature
and density gradients in the undisturbed medium E}], the
presence of a solid bottom, etec. Their effects depend on the
size and locale of the particular explosion and must be
investigated separately. Filnally, it should be pointed out
that the present results do not apply to charge depths of less
than 2 charge radii. Here the assumptions of the theory are
no longer satisfactory, and in addition, the very difficult
problem of an air-backed explosion arises. It is felt that

for these very shallow charge depths, more work, especially
experlmental, 1s necessary.

* See References [E]and [q] .
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APPENDIX
FREE WATER SHOCKWAVE PARAMETERS

For a shock front moving through a fluid medium, the
hydrodynamic and thermodynamic transitions are specified by
the Rankine-Hugoniot relations; for an expansion wave, on the
other hand, isentropic change. are applicable. 1If the initial
state of *he medium is known, and if sufficient P-V-T data 1is
available, both cases can be expressed completely in terms of
one 1ndependent variable - for example the pressure change.
For the relatively low pressure changes applicable to this
report, the isentropic and the Hugoniot curves for water are
almost identical and differ but 1little from the 1sothermal.

The following Rankine-Hugoniot parameters for fresh water,
initially at rest and at 20°C and 1 atm., have been calculated
with the aid of references [A,H,J] and are quite satisfactory
up to pressures of 30,000 psi. For much higher pressures, the
numerical values given in reference [P] should be used. The
following relations hold for this low pressure region:

U = c (1 +5.367x107° p)
u = co(2.89x 10’6 P)
U-u = co(l + 2.463 « 10’6 P) (A1)

o/

co(l + 8.449 « 10’6 P)

where P 1s the excess pressure in psi, U 1s the propagation
velocity of the shockwave, and u and ¢ are the particle
velocity and local sound velocity behind the shock front.
Cqy? the sound velocity 1in the undisturbed water (20°C and
1 atm.), 1is 1483 meters/second.

An equation of state for water, applicable to the true
as well as the Hugoniot adiabatic up to a pressure of 30,00C
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psi, is given by the expression

Vv = 1.00177 {1-3.04 «107%p + 2.3 x 10~11p2) (A2)

where V is the specific volume of the water, and an initial
state of 20°C and 1 atm. is assumed.

The experimental free water shockwave peak pressure data
are conveniently expressed in terms of the initial charge
radius For pressures below 30,000 psi

PF = 2.77* 105 ?'1'20 Pentolite, p = 1.€3 gm/cc [F]
(A3)

]

Pp = 2.07+10° 7113 N1, o= 1.55 gm/ec (D]
where PF 1s the free water peak pressure in psi, r© is the
radial distance from the center of the charge expressed in
charge radii, and © is the loading density.

The free water pressure decay behind the shock front,
observed at a fixed point, is given by the expression

P = PFe't/g P, < 15,000 psi
where
o = 31.1 W3 523 pentolite, o = 1.63 gm/cc [F](A4)
6 = 41,9 wl/3 518

TNT, © = 1.55 gm/cc [D]

Here P 1s in the same units as PF, t is the time after shock

front arrival in microseconds, © is the time constant in
microseconds, and W is the charge weight in 1lbs.
is valid only up to ¢ = ©.

This formula
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